Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 17, 2026
-
The remarkable progress in artificial intelligence (AI) has ushered in a new era characterized by models with billions of parameters, enabling extraordinary capabilities across diverse domains. However, these achievements come at a significant cost in terms of memory and energy consumption. The growing demand for computational resources raises grand challenges for the sustainable development of energy-efficient AI systems. This paper delves into the paradigm of memory-based computing as a promising avenue to address these challenges. By capitalizing on the inherent characteristics of memory and its efficient utilization, memory-based computing offers a novel approach to enhance AI performance while reducing the associated energy costs. Our paper systematically analyzes the multifaceted aspects of this paradigm, highlighting its potential benefits and outlining the challenges it poses. Through an exploration of various methodologies, architectures, and algorithms, we elucidate the intricate interplay between memory utilization, computational efficiency, and AI model complexity. Furthermore, we review the evolving area of hardware and software solutions for memory-based computing, underscoring their implications for achieving energy-efficient AI systems. As AI continues its rapid evolution, identifying the key challenges and insights presented in this paper serve as a foundational guide for researchers striving to navigate the complex field of memory-based computing and its pivotal role in shaping the future of energy-efficient AI.more » « less
-
Three-dimensional (3D)-stacked memories, such as the Hybrid Memory Cube (HMC), provide a promising solution for overcoming the bandwidth wall between processors and memory by integrating memory and logic dies in a single stack. Such memories also utilize a network-on-chip (NoC) to connect their internal structural elements and to enable scalability. This novel usage of NoCs enables numerous benefits such as high bandwidth and memory-level parallelism and creates future possibilities for efficient processing-in-memory techniques. However, the implications of such NoC integration on the performance characteristics of 3D-stacked memories in terms of memory access latency and bandwidth have not been fully explored. This paper addresses this knowledge gap (i) by characterizing an HMC prototype using Micron's AC-510 accelerator board and by revealing its access latency and bandwidth behaviors; and (ii) by investigating the implications of such behaviors on system- and software-level designs. Compared to traditional DDR-based memories, our examinations reveal the performance impacts of NoCs for current and future 3D-stacked memories and demonstrate how the packet-based protocol, internal queuing characteristics, traffic conditions, and other unique features of the HMC affects the performance of applications.more » « less
An official website of the United States government
